Indian Pacing Electrophysiol. J.

ISSN 0972-6292

Home Page Current Issue List of Editors

Indian Pacing Electrophysiol. J. 2007;7(3):166-175                      Review Article

Defibrillation Testing of the Implantable Cardioverter Defibrillator: When, How, and by Whom?

Download PDF 332 KB 

Luis A. Pires, MD, FACC

Heart Rhythm Center, Division of Cardiovascular Medicine, Department of Medicine, StJohn Hospital and Medical Center, Detroit, MI.

Address for correspondence: Luis A. Pires, MD, FACC, Heart Rhythm Center, StJohn Hospital and Medical Center, 22101 Moross Road, Detroit, MI 48236. E-mail: luis.pires/at/

            The implantable cardioverter-defibrillator (ICD) has become an integral part of treatment for a variety of patients with symptomatic, or at risk for, ventricular tachyarrhythmias. The ICD's effectiveness is attributed to its ability to promptly detect and terminate ventricular tachycardia (VT) and fibrillation (VF). The clinical trials that established the positive role of ICD therapy were based on patients who underwent some form of defibrillation testing at the time of implantation. Therefore, since its advent, intraoperative defibrillation testing of the ICD to assure reliable detection and termination of VT/VF has been a standard practice. But because of advances in defibrillator and lead technology, which now facilitates successful device implantation (i.e., low defibrillation energy requirement to allow for an adequate programmed safety margin) in the majority of patients, the necessity of defibrillation testing has been called into attention. Despite substantial progress, it is not altogether clear whether a wholesale abandonment of intraoperative ICD testing is appropriate at this point. We review pertinent data regarding pros and cons of ICD testing and offer a suggestion as to when, how, and who should test ICDs.
Key Words: defibrillation, ICD, testing, ventricular fibrillation

            Several clinical trials over the past decade have established the efficacy and benefit of the implantable cardioverter-defibrillator (ICD) in patients with documented1, as well as those at increased risk of developing2-4, sustained ventricular tachyarrhythmias. As a result ICD therapy has become standard therapy for a variety of patient groups5. Through its ability to detect and (promptly) terminate >95% of spontaneous episodes of ventricular tachycardia (VT) and ventricular fibrillation (VF), ICD therapy has been shown to reduce the risk of sudden death6 and overall mortality1-4. Such observations were based on patients who underwent some form of intraoperative testing1-4. Therefore, ICD testing at the time of device implantation to confirm proper detection and successful termination of induced VT/VF has been the standard of care for several years7-11. The amount of energy (Joules) needed to terminate VF is used to establish a given patient's defibrillation energy requirement (DER).

            Advances in defibrillator technology, most notably the use of biphasic shock waveforms12-15, now facilitate successful device implantation (i.e., DER that is at least 10 J lower than the device's maximum output) in the majority of cases16-19. As a result, some investigators20 have recently questioned the necessity of ICD testing altogether, noting that, among other considerations, forfeiting ICD testing might lead to an increase in the use of ICDs by allowing non-electrophysiologists with reduced training requirements21, who may also be uncomfortable with ICD testing, to implant devices. Despite substantial improvement in device and lead technologies and the (probable) necessity to expand device therapy to a greater number of patients, current data do not support wholesale abandonment of ICD testing19,22,23.
When To Test

            Device testing at the time of implantation has been a mainstay of such therapy since the advent of the ICD. Unless there are specific contraindications to testing (Table 1), VF should be induced to ensure that the ICD can reliably sense, detect and terminate the arrhythmia with an adequate shock energy (see below). Some of the contraindications are absolute and unavoidable (e.g., known cavity thrombus), but others can be overcome (such as assuring the presence of anesthesia staff to facilitate testing). Among our cohort of 835 consecutive patients, testing was not performed in 203 (24%), of which ~70% were due to the presence of cavity thrombi or inadequate anticoagulation and intraoperative hypotension19. Other investigators have reported similar results22, and in general in up to a third of patients, testing may have to be postponed. Recently some have postponed intraoperative testing in patients undergoing cardiac resynchronization therapy (CRT) devices for fear of coronary sinus lead dislodgment24, but we have not found this to be a significant problem among a cohort of >500 patients (unpublished observation). Patients who do not undergo intraoperative testing should be reassessed in the near future (usually 4 to 6 weeks) and testing reconsidered once the contraindications have been resolved.

            With rare exceptions noninvasive postoperative testing of ICDs, either predischarge or several weeks post-implantation, may not be required25-29 unless there are specific circumstances in which an increase in DER is expected, most notably the addition of amiodarone therapy. Because amiodarone increases DER by as much as 50%30-33, and can also result in significant slowing of VT rate and, therefore, need for ICD reprogramming, device retesting should be strongly considered in patients receiving it. In cases where intraoperative DFT is ≤15 J, however, ICD retesting may not be required since the drug's impact on defibrillation energy safety margin is small with modern ICDs33. It should be noted, however, that this may not apply to patients with reduced (<20%) left ventricular ejection fraction (LVEF) since those patients were excluded from the study33, a substantial proportion of ICD recipients in general. Although several variables, including LVEF, have been shown to influence intraoperative DER23, there are no specific discriminators that can adequately predict which patients are expected to have high or low DER. Foregoing testing in patients with low LVEF (at our center we use an arbitrary cutoff value of <10%) may have the unintended consequence of possible device failure among patients at potentially greater risk of developing spontaneous VT/VF and for whom repeated unsuccessful shocks are more likely to lead to post-shock pump failure34-37.

            As for testing at the time of ICD generator replacements, in addition to confirming proper integrity of the chronic leads38, we recommend defibrillation testing unless there had been appropriate therapies against VF in the near past and no evidence of substantial progression in the patient's cardiac disease and/or the addition of drugs (e.g., amiodarone) that may adversely raise DER. In clinically stable patients whose devices are not being replaced and who have not received any successful therapies against VF for a period of time, defibrillation testing might be reasonable albeit there is limited data regarding its usefulness28.

How To Test and the Impact of Testing

            Prior to defibrillation testing, adequate sensing (>5 mV) and pacing (<1 V) parameters and electrical integrity (connections) between the leads and pulse generator should be determined and recorded. And assuming no contraindications (Table 1), with the patient comfortably sedated, VF is induced (through a variety of methods) with the following goals: (1) assure proper sensing and detection (and in case of first-shock failures, redetection) of VF; and (2) establish DER, based on which the device is then optimally programmed.

Table 1. Contraindications to Intraoperative ICD Testing

*Unless there is no thrombus on transesophageal echocardiography. †Especially in patients with anticipated high defibrillation energy requirement (increasing the likelihood of needed external shock). ‡The best timing is uncertain, but we generally wait 4 to 6 weeks. ¶ We use a cutoff of ≤10% ejection fraction; others have used <20%33.

            There are two broad categories of defibrillation testing: defibrillation threshold (DFT) and defibrillation safety margin (DSM). The DFT, defined as the lowest amount of energy capable of terminating an episode of induced VF, is most commonly determined through a step-down method (i.e., successive lowering of shock strength). Because success of defibrillation is probabilistic, a true DFT cannot be established with certainty. For this reason plus the potential risk of repeated inductions of VF and defibrillations36,37, determining a DFT is now rarely used clinically except for research purposes28,39. In clinical setting, the goal of ICD testing is to determine an energy level that has a reasonable chance of success against spontaneous VT/VF events. This can be established by confirming a simple DSM, defined as an energy level capable of terminating one or more (generally two) episodes of induced VF and low enough to be at least ≥10 J less than the device's maximum output16-18. This 10 J "safety margin", achievable in nearly all patients with modern ICDs16-18,28,39,40, has long been a common practice41 because patients with elevated DER (and monophasic devices) were thought to have a higher mortality rate42-44. With modern, biphasic devices, elevated DER has not been shown to adversely impact patient survival45,46. Nonetheless, though the required magnitude of the safety margin energy is uncertain and debated47, its establishment and incorporation in ICD programming allows for uncertainties in the DER requirement over time due to factors such as the addition of antiarrhythmic drugs, progression of cardiac disease, acute coronary events, and electrolyte changes.
            The confirmation of a single defibrillation success at 10-15 J (with devices with maximum outputs of 30-35 J) predict successes with stronger (20-30 J) shocks with a nearly 100% accuracy16-19. Repeat testing at the same or lower energy levels does not seem to be clinically important and in our laboratory we follow a simple testing protocol: we test once at 11 or 15 J depending on the device's maximum output (Figure 1); and if the first shock fails, a second shock of 10 J greater (21 or 25 J) is delivered (Figure 2). If the second shock fails, after reconfirming proper lead positions, we would then change shock polarity and tilt (StJude devices) and repeat the process. With an adequate programmed safety margin (generally ≥10 J), the first shock success rates against spontaneous VT/VF episodes range from 83% to 93%16-19,22, suggesting that defibrillation failures for spontaneous VT/VF may be due to factors (e.g., heart disease progression) not present at the time of intraoperative ICD testing. Therefore, it is not surprising that rigorous intraoperative testing may not necessarily translate into a fail-safe device therapy19,34,35

Figure 1: From top to bottom: atrial electrograms, ventricular electrograms, and marker channel. AS and VS indicates, respectively, atrial sensing and ventricular sensing. Shows an episode of induced ventricular fibrillation (dotted arrow) followed by a single successful 11 J shock (arrow) delivered by a 31 J output device.

Figure 2: From top to bottom: atrial electrograms, ventricular electrograms, and marker channel. The tracing is continuous (top to bottom panel). Shows an episode of induced ventricular fibrillation (dotted arrow) followed by a failed 15 J shock (arrow), followed by a second successful 25 J shock (open arrow) delivered by a 35 J output device. AS and VS indicates, respectively, atrial and ventricular sensing.

            Despite a surge in the use of ICDs, there has been limited data on the impact of ICD testing on patient outcome, in terms of both defibrillation success against spontaneous VT/VF events and patient survival19,22. When comparing the outcome of ICD recipients who underwent DFT, DSM and no testing at the time of implantation, we recently reported similar success of ICD therapies and sudden-death-free survival among the three groups, however, overall survival was significantly worse in the no-testing group but similar in the DFT and DSM groups19. The comparable survival rates in the DFT and DSM tested groups are important given that for many years now DSM testing has replaced DFT testing in clinical settings. The higher mortality in the no-testing group probably reflected the inclusion of sicker patients, and not the result of device therapy failure19. But since we could not confirm the specific causes of death in all cases, in the absence of prospectively obtained corroborating data we recommended against abandoning testing altogether, in line with other investigators22.  
            The ICD's primary function is to abort would-be fatal tachyarrhythmic events. Despite its phenomenal efficacy in terminating spontaneous VT/VF events, the ICDs protection against sudden death is not absolute19,34,35,48. With rare exceptions49, device malfunctions very infrequently account for sudden death in ICD recipients34,35. Often such deaths are the result of an acute cardiac (e.g., acute myocardial infarction) or non-cardiac (e.g, vascular rupture) process in the setting of a normally functioning ICD - factors that cannot be anticipated or tested for at the time of implant34,35.

Who Should Test

            ICD testing has always been the domain of cardiac electrophysiologists, beginning with  epicardial devices and later with the advent of first-generation transvenous devices, both of which were implanted by cardiac surgeons. In light of recent proposal sanctioning alternative training pathways in device implantation21, and heavy industry promotion, device testing (usually DSM) is now also performed by non-electrophysiologists. Whereas operator volume may impact patient outcome50, there exists no data on the safety and outcome of patients treated by non-electrophysiologists, making specific recommendations as who should test ICDs problematic. Nonetheless it should be noted that non-electrophysiologists are not expected to participate in implantation of devices in patients with documented VT/VF (i.e., secondary prevention) who may be at greater future risk and, therefore, for whom careful testing is important to assure proper device function. Moreover, non-electrophysiologists, who may have suboptimal training in defibrillation, must be fully aware of patient and device specific factors that influence defibrillation success and proper troubleshooting methods to insure successful implantation in each case40. When there is sufficient doubt about the outcome, testing should be left to an experienced electrophysiologist.


            With current ICDs, successful device implantation (i.e., a DER energy allowing for a ≥10 J programming safety margin), determined through a single test and one episode of induced VF, can be expected in nearly all patients. Since such minimal testing rarely results in adverse events and there are no prospective data on the outcome of ICD recipients whose devices are not tested intraoperatively, we feel that, in the absence of contraindications, a minimum of testing is still appropriate (Figure 3). Certainly we do not believe testing should be abandoned to simply facilitate more device implantations by non-electrophysiologists who may be in some cases uncomfortable with defibrillation testing.

Figure 3: A suggested approach to intraoperative ICD testing. See text for details.


1. Connolly SJ, Hallstrom AP, Cappato R, et al. Metanalysis of the implantable cardioverter defibrillator secondary prevention trials: AVID, CASH and CIDS studies. Eur heart J 2000;21:2071-78.

2. Moss AJ, Hall WJ, Cannom DS, et al. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. N Engl J Med 1996;335:1933-40.

3. Buxton AE, Lee KL, Fisher JD, et al. A randomized study of the prevention of sudden death in patients with coronary artery disease. N Engl J Med 1999;341:1882-90.

4. Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction (The Multicenter Automatic Defibrillator Trial II). N Engl J Med 2002;346:877-83.

5. Gregoratos G, Abrams J, Epstein AE. ACC/AHA/NASPE 2002 Guideline update for implantation of cardiac pacemakers and antiarrhythmic devices - summary article. J Am Coll Cardiol 2002;40:1703-19.

6. Anderson KP. Sudden cardiac death unresponsive to implantable defibrillator therapy: An urgent target for clinicians, industry and government. J Interv Card Electrophysiol 2005;14:71-8.

7. Singer I, Lang D. Defibrillation threshold: Clinical utility and therapeutic implications. Pacing Clin Electrophysiol 1992;15:932-49.

8. Bardy GH, Johnson G, Poole JE, et al. A simplified single-lead unipolar transvenous cardioversion defibrillation system. Circulation 1993;88:543-47.

9. Tung RT, Bajaj AK. Safety of implantation of a cardioverter-defibrillator without general anesthesia in an electrophysiology laboratory. Am J Cardiol 1995;75:908-12.

10. Strickberger SA, Niebauer M, Man KC, et al. Comparison of implantation of nonthoracothomy defibrillators in the operating room versus the electrophysiology laboratory. Am J Cardiol 1995;75:255-57.

11. DeGroot PJ, Church TR, Mehra R, et al. Derivation of a defibrillator implant criterion based on probability of successful defibrillation. Pacing Clin Electrophysiol 1997;20:1924-35.

12. Wyse DG, Kavanagh KM, et al. Comparison of biphasic and monophasic shocks for defibrillation using a nonthoracotomy system. Am J Cardiol 1993;71:197-202.

13. Neuzner J, Pitschner HF, Huth C, Schlepper M. Effect of bipasic waveform pulse on endocardial defibrillation efficacy in humans. Pacing Clin Electrophysiol 1994;17:207-12.

14. Natale A, Sra J, Krum D, et al. Comparison of biphasic and monophasic pulses: Does the advantage of biphasic shocks depend on the waveshape? Pacing Clin Electrophysiol 1995;18:1354-61.

15. Olsovsky MR, Hodgson DM, Shorofsky SR, et al. Effect of biphasic waveforms on transvenous defibrillation thresholds in patients with coronary artery disease. Am J Cardiol 1997;80:1098-1100.

16. Gold M , Breiter D, Hahn S. Safety of a single successful conversion of ventricular fibrillation before the implantation of cardioverter-defibrillators. Pacing Clin Electrophysiol 2003;26:483-86.

17. Higgins S, Mann D, Calkins H, et al. One conversion of ventricular fibrillation is adequate for implantable cardioverter-debibrillator implant: An analysis from the low energy safety study (LESS). Heart Rhythm 2005;2:117-22.

18. Day J, Doshi R, Belott, P, et al. Most patients may safely undergo induction-less or limited shock testing at ICD implantation. Heart Rhythm 2005;2:S232 (Abstract).

19. Pires LA, Johnson KM. Intraoperative testing of the implantable cardioverter-defibrillator: How much is enough? J Cardiovasc Electrophysiol 2006;17:140-5.

20. Strickberger SA, Klein GJ. Is defibrillation testing required for debibrillator implantation? J Am Coll Cardiol 2004;44:88-91.

21. Curtis AB, Ellenbogen KA, et al. Training pathways for implantation of cardioverter defibrillators and cardiac resynchronization devices. Heart Rhythm 2004;3:371-5.

22. Russo AM, Sauer W, Gerstenfeld EP, et al. Defibrillation threshold testing: Is it really necessary at the time of implantable cardioverter-defibrillator insertion? Heart Rhythm 2005;2:456-61.

23. Swerdlow CD, Russo AM, DeGroot PJ. The dilemma of ICD implant testing. Pacing Clin Electrophysiol 2007;30:675-700.

24. Gasparini M, Galimberti P, Regoli F, Ceriotti C, Bonadies M. Delayed defibrillation testing in patients implanted with biventricular ICD (CRT-D): A reliable and safe approach. J Cardiovasc Electrophysiol 2005;16:1279-83.

25. Delvecchio A, Trivedi HA, Fisher JD, et al. Value of pre-hospital discharge defibrillation testing in recipients of implanted cardioverter defibrillators. Pacing Clin Electrophysiol 2005;28:S260-62.

26. Higgins SL, Rich DH, Haygood JR, et al. ICD restudy: results and potential benefit from routine predischarge and 2-month evaluation. Pacing Clin Electrophysiol 1998;21:410-17.

27. Wieckhorst A, Buchwald A, Unterberberg C. On the necessity of the invasive predischarge test after implantation of a cardioverter-defibrillator. Am J Cardiol 1998;81:933-35.

28. Glickson M, Luria D, Friedamn PA. Are routine arrhythmia inductions necessary in patients with pectoral implantable cardioverter defibrillators? J Cardiovasc Electrophysiol 2000;11:127-35.

29. Brodsky CM, Chang F, Vlay SC. Multicenter evaluation of implantable cardioverter defibrillator testing after implant: the Post Implant Testing Study (PITS). Pacing Clin Electrophysiol 1999;22:1769-76.

30. Pelosi F, Oral H, Kim MH, et al. Effect of chronic amiodarone therapy on defibrillation energy requirements in humans. J Cardiovasc Electrophysiol 2000;11:736-40.

31. Zhou L, Chen BP, Kluger J, Fan C, Chow MS. Effects of amiodarone and its active metabolite desenthylamiodarone on the ventricular defibrillation threshold. J Am Coll Cardiol 1998;31:1672-78.

32. Kuhlkamp V, Mewis C, Suchalla R, et al. Effect of amiodarone and sotalol on the defibrillation threshold in comparison to patients without antiarrhythmic drug treatment. Int J Cardiol 1999;69:271-79.

33. Hohnloser SH, Dorian P, Roberts R, et al. Effect of amiodarone and sotalol on ventricular defibrillation threshold: the optimal pharmacological therapy in cardioverter defibrillator patients (OPTIC) trial. Circulation 2006;114:104-09.

34. Pires LA, Lehmann MH, Steinman RT, et al. Sudden death in implantable cardioverter-defibrillator recipients: Clinical context, arrhythmic events and device responses. J Am coll Cardiol 1999;33:24-32.

35. Pires LA, Hull M, Nino CL, May LM, Ganji J. Sudden death in patients with transvenous implantable cardioverter-defibrillator systems: Terminal events, predictors and potential mechanisms. J Cardiovasc Electrophysiol 1999;10:1049-56.

36. Frame R, Brodman R, Furman S, et al. Clinical evaluation of the safety of repetitive intraoperative defibrillation threshold testing. Pacing Clin Electrophysiol 1992;15:870-77.

37. Steinbeck G, Dorwarth U, Mattke S, et al. Hemodynamic deterioration during ICD implant: Predictors of high-risk patients. Am Heart J 1994;127:1064-67.

38. Goyal R, Harvey M, Horwood L, et al. Incidence of lead system malfunction detected during implantable defibrillator generator replacement. Pacing Clin Electrophysiol 1995;18:599-608.

39. Gold MR, Higgins S, Klein R, et al. Efficacy and temporal stability of reduced safety margins for ventricular defibrillation. Primary results from the Low Energy Safety Study (LESS). Circulation 2002;105:2043-48.

40. Mainigi SK, Callans DJ. How to manage the patient with high defibrillation threshold. Heart Rhythm 2006;3:492-95.

41. Marchlinski F, Flores B, Miller J, Gottlieb C, Hargrove C. Relation of the intraoperative defibrillation threshold to successful postoperative defibrillation with the automatic implantable cardioverter defibrillator. Am J Cardiol 1988;62:393-98

42. Pinski S, Vaneiro G, Castle LW, et al. Patients with a high defibrillation threshold: clinical characteristics, management and outcome. Am Heart J 1991;122:89-95

43. Epstein A, Ellenbogen K, Kirk K, et al. Clinical characteristics and outcomes of patients with high defibrillation thresholds: A multicenter study. Circulation 1992;86:1206-16

44. Lehmann MH, Thomas A, Nabih M, Steinman RT. Sudden death in recipients of first-generation implantable cardioverter-defibrillators: Analysis of terminal events. J Interv Cardiol 1994;7:487-503

45. Shukla HH, Flaker GC, Roberts JV. High defibrillation thresholds in transvenous biphasic defibrillators: Clinical predictors and prognostic implications. Pacing Clin Electrophysiol 2003;26:44-8.

46. Anvari A, Gottsauner-Wolf M, Turel Z, et al. Predictors of outcome in patients with implantable cardioverter defibrillators. Cardiology 1998;90:180-86.

47. Barold SS, Herweg B, Curtis AB. The defibrillation safety margin of patients receiving ICDs: A matter of definition. Pacing Clin Electrophysiol 2005;28:881-82.

48. Mitchell LB, Pineda EA, Titus JL, et al. Sudden death in patients with implantable cardioverter defibrillators: The importance of post-shock electromechanical dissociation. J Am Coll Cardiol 2002;39:1323-28.

49. Gornick CC, Hauser RG, Almquist AK, Maron BJ. Unpredictable implantable cardioverter-defibrillator pulse generator failure due to electrical overstress causing death in a young high-risk patient with hypertrophic cardiomyopathy. Heart Rhythm 2005;2:681-83.

50. Al-Katib SM, Lucas FL, Jollis JG, Malenka DJ, Wenneberg DE. The relation between patients' outcomes and the volume of cardioverter-defibrillator implantation procedures performed by physicians treating medicare beneficiaries. J Am Coll Cardiol 2005;46:1536-40.

Home Page Current Issue List of Editors